Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Biochem Biophys Res Commun ; 717: 150061, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718570

RESUMO

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.

2.
Chemistry ; : e202400537, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703390

RESUMO

With the popularization of 5G technology and artificial intelligence, thermally conductive epoxies with self-healing ability will be widely used in flexible electronic materials. Although many compounds containing both performances have been synthesized, there is little systematic theory to explain this coordination mechanism. In this paper, alkyl chains of different lengths were introduced to epoxies for discussing the thermally conductive, the self-healing performance, and the synergistic effect. A series of electronic-grade biphenyl epoxies (4,4'-bis(oxiran-2-ylmethoxy)-1,1'-biphenyl (1), 4,4'-bis(2-(oxiran-2-yl)ethoxy)-1,1'-biphenyl (2), 4,4'-bis(3-(oxiran-2-yl)propoxy)-1,1'-biphenyl (3), and 4,4'-bis(4-(oxiran-2-yl)butoxy)-1,1'-biphenyl (4) were synthesized and characterized. Furthermore, they were cured with decanedioic acid to produce polymers. Results showed that alkyl chains can both affect the two properties, and the epoxies suitable for specific application scenarios can be prepared by adjusting the length of alkyl chains. In terms of thermal conductivity, compound 1 was a most promising material. However, compound 4 was expected to be utilized in flexible electronic devices because of its acceptable thermal conductivity, self-healing ability, transparency, and flexibility.

3.
Light Sci Appl ; 13(1): 85, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589343

RESUMO

Organic mechanoluminescence materials, featuring dual emission and ultralong phosphorescence characteristics, exhibit significant potential for applications in real-time stress sensing, pressure-sensitive lighting, advanced security marking techniques, and material breakage monitoring. However, due to immature molecular design strategies and unclear luminescence mechanisms, these materials remain rarely reported. In this study, we propose a valuable molecular design strategy to achieve dual-channel mechano-phosphorescence. By introducing the arylphosphine oxide group into a highly twisted molecular framework, enhanced intra- and intermolecular interactions could be achieved within rigid structures, leading to dual-channel mechanoluminescence with greatly promoted ultralong phosphorescence. Further investigations reveal the substantial boosting effect of intra- and intermolecular interactions on mechanoluminescence and ultralong phosphorescence properties by locking the highly twisted molecular skeleton. This work provides a concise and guiding route to develop novel smart responsive luminescence materials for widespread applications in material science.

4.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685243

RESUMO

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Assuntos
Proteínas de Insetos , Feromônios , Animais , Feromônios/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Masculino , Feminino , Ligação Proteica , Heterópteros/metabolismo , Heterópteros/genética
5.
Phytomedicine ; 128: 155477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489890

RESUMO

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Proteína Potenciadora do Homólogo 2 de Zeste , Glucosídeos , Células Estreladas do Fígado , Histonas , Cirrose Hepática , Monoterpenos , PPAR gama , Animais , Glucosídeos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , PPAR gama/metabolismo , Monoterpenos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Histonas/metabolismo , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Masculino , Humanos , Camundongos Endogâmicos C57BL , Metilação , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Simulação de Acoplamento Molecular
6.
J Neurol ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289535

RESUMO

Cryptococcal meningitis (CM) is a fatal fungal central nervous system (CNS) infection caused by Cryptococcus infecting the meninges and/or brain parenchyma, with fever, headache, neck stiffness, and visual disturbances as the primary clinical manifestations. Immunocompromised individuals with human immunodeficiency virus (HIV) infection or who have undergone organ transplantation, as well as immunocompetent people can both be susceptible to CM. Without treatment, patients with CM may have a mortality rate of up to 100% after hospital admission. Even after receiving therapy, CM patients may still suffer from problems such as difficulty to cure, poor prognosis, and high mortality. Therefore, timely and effective treatment is essential to improve the mortality and prognosis of CM patients. Currently, the clinical outcomes of CM are frequently unsatisfactory due to limited drug choices, severe adverse reactions, drug resistance, etc. Here, we review the research progress of CM treatment strategies and discuss the suitable options for managing CM, hoping to provide a reference for physicians to select the most appropriate treatment regimens for CM patients.

7.
Phytomedicine ; 123: 155209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984123

RESUMO

BACKGROUND: Soothing the liver and regulating qi is one of the core ideas of traditional Chinese medicine (TCM) in the treatment of fatty liver. Si-Ni-San (SNS) is a well-known herbal formula in TCM for liver soothing and qi regulation in fatty liver treatment. However, its efficacy lacks modern scientific evidence. PURPOSE: This study was aimed to investigate the impact of SNS on metabolic associated fatty liver disease (MAFLD) in mice and explore the underlying molecular mechanisms, particularly its effects on lipid metabolism in hepatocytes. METHODS: The therapeutic effect of SNS was evaluated using in vivo and in vitro models of high-fat/high-cholesterol (HFHC) diet-induced mice and palmitic acid (PA)-induced hepatocytes, respectively. Molecular biological techniques such as RNA-sequencing (RNA-seq), co-immunoprecipitation (co-IP), and western blotting were employed to elucidate the molecular mechanism of SNS in regulating lipid metabolism in hepatocytes. RESULTS: Our findings revealed that SNS effectively reduced lipid accumulation in the livers of HFHC diet-induced mice and PA-induced hepatocytes. RNA-seq analysis demonstrated that SNS significantly down-regulated the expression of fatty acid synthase (Fasn) in the livers of HFHC-fed mice. Mechanistically, SNS inhibited Fasn expression and lipid accumulation by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK). Activation of AMPK suppressed the activity of the transcriptional coactivator p300 and modulated the protein stability of sterol regulatory element-binding protein-1c (SREBP-1c). Importantly, p300 was required for the inhibition of Fasn expression and lipid accumulation by SNS. Furthermore, SNS activated AMPK by decreasing adenosine triphosphate (ATP) production in hepatocytes. CONCLUSION: This study provided novel evidence on the regulatory mechanisms underlying the effects of SNS on Fasn expression. Our findings demonstrate, for the first time, that SNS exerts suppressive effects on Fasn expression through modulation of the AMPK/p300/SREBP-1c axis. Consequently, this regulatory pathway mitigates excessive lipid accumulation and ameliorates MAFLD in mice.


Assuntos
Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fígado , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metabolismo dos Lipídeos , Ácido Graxo Sintases/metabolismo , Colesterol/metabolismo , Estabilidade Proteica
8.
Angew Chem Int Ed Engl ; 63(8): e202317631, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126932

RESUMO

Organic ultra-long room-temperature phosphorescence (RTP) materials in the amorphous state have attracted widespread attention due to their simple preparation and flexibility to adopt various forms in sensors, bioimaging, and encryption applications. However, the amorphous molecular host for the host-guest RTP systems is highly demanded but limited. Here, a universal molecular host (DPOBP-Br) has been designed by integration of an amorphous moiety of diphenylphosphine oxide (DPO) and an intersystem crossing (ISC) group of 4-bromo-benzophenone (BP-Br). Various commercial fluorescence dyes were doped into the tight and transparent DPOBP-Br film, respectively, resulting in amorphous host-guest systems with ultra-long RTP colors from green to red. It was found that DPOBP-Br acted as a universal "triplet exciton pump" for promoting the generation of triplet excitons in the guest, through energy transfer processes and external heavy-atom effect based on DPOBP-Br. Interestingly, dynamic RTP was achieved by controlling residual oxygen concentration in the amorphous matrix by UV irradiation. Therefore, multi-dimensional anti-counterfeiting coatings were realized even on curved surfaces, simultaneously exhibiting spatial and 2D-time dependence. This work provides a strategy to design new amorphous molecular hosts for RTP systems and demonstrates the advanced information encryption with tempo-spatial resolution based on the dynamic ultra-long RTP of an amorphous system.

9.
Mol Reprod Dev ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963204

RESUMO

Controlling ovarian hyperstimulation syndrome (OHSS) in the controlled ovarian hyperstimulation treatment is necessary to increase the implantation success rate. This study aimed to explore the effect of naringin on the endometrial receptivity of OHSS rats. Female rats were randomly assigned to six groups: Blank, model, low-dose naringin (100 mg/kg/day), medium-dose naringin (200 mg/kg/day), high-dose naringin (400 mg/kg/day), and positive (0.18 mg/kg/day estradiol valerate) groups. Except for the blank group, rats established the OHSS model on Day 7, and their treatments were from Day 0 to 14, separately. Hematoxylin and eosin, immunohistochemical, and scanning electron microscopy were performed to detect the naringin effects on the endometrial receptivity of the OHSS model. Next, circRNAs transcriptome analysis was performed to screen circRNAs. Western blot analysis and real-time quantitative PCR were used to verify it. Our study showed that naringin treatments increased embryo number, endometrial thickness, pinopodes number, and Ki67 expression in the OHSS rats. Moreover, the result of circRNAs transcriptome sequencing showed that naringin significantly inhibited the rnocirc_008140 expression in the OHSS rats and significantly inhibited the changes of 28 gene ontology terms and three Kyoto Encyclopedia of Genes and Genomes pathways which were induced by OHSS. Abcc4 and Rps6ka5 genes were the enriched genes of those pathways. Finally, 24 miRNA target genes of rnocirc_008140 were predicted. Our study showed that naringin significantly improved the endometrial receptivity of OHSS rats to increase the embryo implantation success by reducing rnocirc_008140-adsorbed miRNAs to regulate Abcc4 and Rps6ka5 expression.

10.
Nat Prod Bioprospect ; 13(1): 36, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804362

RESUMO

Quzhou Aurantii Fructus (QAF) has a long history as a folk medicine and food for the treatment of liver diseases. While our earlier study provided evidence of hepatoprotective properties contained within the flavonoids and limonins constituents in QAF, the potential preventative effects afforded by essential oil components present within QAF remains enigmatic. In this study, we prepared Quzhou Aurantii Fructus essential oil (QAFEO) and confirmed its anti-inflammatory effects on liver inflammation through experimentation on lipopolysaccharide and D-galactosamine (LPS/D-GalN) induced acute liver failure (ALF) mouse models. Using RNA-sequence (RNA-seq) analysis, we found that QAFEO prevented ALF by systematically blunting the pathways involved in response to LPS and toll-like receptor signaling pathways. QAFEO effectively suppressed the phosphorylation of tank-binding kinase 1 (TBK1), TGF-beta activated kinase 1 (TAK1), interferon regulatory factor 3 (IRF3), and the activation of mitogen activated kinase-like protein (MAPK) and nuclear factor-kappa B (NF-κB) pathways in vivo and in vitro. Importantly, QAFEO substantially reduced myeloid differentiation primary response gene 88 (MyD88)- toll-like receptor 4 (TLR4) interaction levels. Moreover, 8 compounds from QAFEO could directly bind to REAL, TAK1, MyD88, TBK1, and IRF3. Taken together, the results of our study support the notion that QAFEO exerts a hepatoprotective effect through inhibiting LPS-mediated inflammatory response.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 655-665, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37654146

RESUMO

Objective By review of the studies comparing the measurements properties of EuroQol five-dimensional questionnaire (EQ-5D) and short-form 6-dimension health survey (SF-6D) in Chinese populations,this study aims to provide a reference for selecting,applying,and improving the health-related quality of life and health utility measurement tools for Chinese populations.Methods We retrieved the original studies which compared the two tools from both Chinese and English databases and then summarized the findings of the included studies from the measurement properties.Results A total of 12 studies were screened out,including 9 studies about diseased populations and 3 studies about the general populations.The included studies generally demonstrated that both EQ-5D and SF-6D had good feasibility,while the utility scores generated from them cannot be used interchangeably.For the diseased populations,both EQ-5D and SF-6D and their utility scores had good construct validity,including convergent and known-groups validity,while only the utility scores had good construct validity for the general populations.For the diseased populations,SF-6D had smaller ceiling effect and better sensitivity than EQ-5D-3L,while the comparison results between SF-6D and EQ-5D-5L were inconsistent.For the general populations,SF-6D also had better sensitivity than EQ-5D.In addition,there was little comparative evidence for reliability such as test-retest reliability and responsiveness between SF-6D and SF-6D in the two populations.Conclusion This review summarized the characteristics,methods,results,and conclusions of the studies that directly compared the two tools for the populations in China.Although only the studies directly comparing EQ-5D and SF-6D are included in this review,the common findings in these studies provide a basis for better comparison between the two in the future.

12.
ACS Appl Mater Interfaces ; 15(33): 39896-39904, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555378

RESUMO

Developing polymer-based organic afterglow materials with switchable ultralong organic phosphorescence (UOP) that are insensitive to moisture remains challenging. Herein, two organic luminogens, BBCC and BBCS, were synthesized by attaching 7H-benzo[c]carbazole (BBC) to benzophenone and diphenyl sulfone. These two emitters were employed as guest molecules and doped into epoxy polymers (EPs), which were constructed by in situ polymerization to achieve polymer materials BBCC-EP and BBCS-EP. It was found that BBCC-EP and BBCS-EP films exhibited significant photoactivated UOP properties. After light irradiation, they could produce a conspicuous organic afterglow with phosphorescence quantum yields and lifetimes up to 5.35% and 1.91 s, respectively. Meanwhile, BBCS-EP also presented photochromic characteristics. Upon thermal annealing, the UOP could be turned off, and the polymer films recovered to their pristine state, showing switchable organic afterglow. In addition, BBCC-EP and BBCS-EP displayed excellent water resistance and still produced obvious UOP after soaking in water for 4 weeks. Inspired by the unique photoactivated UOP and photochromic properties, BBCC and BBCS in the mixtures of diglycidyl ether of bisphenol A (DGEBA) and 1,3-propanediamine were employed as security inks for light-controlled multilevel anticounterfeiting. This work may provide helpful guidance for developing photostimuli-responsive polymer-based organic afterglow materials, especially those with stable UOP under ambient conditions.

13.
Int J Biol Macromol ; 250: 126137, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544560

RESUMO

Chemosensory proteins (CSPs) are involved in the earliest steps of the olfactory process by binding and transporting odorants and play a crucial role in the insect's search for food and egg-laying sites. In the present study, the tissue expression profiles showed that both CchiCSP3 and CchiCSP5 of Callosobruchus chinensis were highly expressed in the adult antennae. Subsequently, the recombinant CchiCSP3 and CchiCSP5 proteins were analysed using fluorescence competitive binding assays, and both showed binding affinities for the three mung bean volatiles. Molecular docking and site-directed mutagenesis revealed four key amino acid residues in CchiCSP3 (L47, W80, Y81, and L84) and CchiCSP5 (Y28, K46, L49, and I72). Electroantennogram (EAG) and dual-choice biobehavioral assays showed that the antennae of adult C. chinensis were electrophysiologically active in response to stimulation with all three behaviorally active compounds and that octyl 4-methoxycinnamate and ß-ionone had a significant luring effect on adult C. chinensis, whereas vanillin had a significant avoidance effect. Our study screened three effective behaviorally active compounds based on the involvement of two CchiCSPs in the recognition of mung bean volatiles, providing an opportunity to develop an alternative control strategy using behavioral disruptors to limit the impact of pests.

14.
Pestic Biochem Physiol ; 194: 105513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532328

RESUMO

Riptortus pedestris (bean bug), a common soybean pest, has a highly developed olfactory system to find hosts for feeding and oviposition. Chemosensory proteins (CSPs) have been identified in many insect species; however, their functions in R. pedestris remain unknown. In this study, quantitative real time-polymerase chain reaction (qRT-PCR) revealed that the expression of RpedCSP12 in the adult antennae of R. pedestris increased with age. Moreover, a significant difference in the expression levels of RpedCSP12 was observed between male and female antennae at one and three days of age. We also investigated the binding ability of RpedCSP12 to different ligands using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP12 only bound to one aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, and its binding decreased with increasing pH. Furthermore, homology modelling, molecular docking, and site-directed mutagenesis revealed that the Y27A, L74A, and L85A mutants lost their binding ability to (E)-2-hexenyl (Z)-3-hexenoate. Our findings highlight the olfactory roles of RpedCSP12, providing insights into the mechanism by which RpedCSPs bind to aggregation pheromones. Therefore, our study can be used as a theoretical basis for the population control of R. pedestris in the future.


Assuntos
Heterópteros , Feromônios , Animais , Feminino , Simulação de Acoplamento Molecular , Heterópteros/genética , Glycine max
15.
Biochem Biophys Res Commun ; 674: 10-18, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37393639

RESUMO

Ferroptosis is a type of nonapoptotic necrotic cell death characterized by iron-dependent lipid peroxidation. Saikosaponin A (SsA), a natural bioactive triterpenoid saponin extracted from Radix Bupleuri, has shown potent antitumor activity against various tumors. However, the underlying mechanism of the antitumor activity of SsA remains unclear. Here, we discovered that SsA induced HCC cell ferroptosis in vitro and in vivo. Using RNA-sequence analysis, we found that SsA mainly affected the glutathione metabolic pathway and inhibited the expression of cystine transporter solute carrier family 7 member 11 (SLC7A11). Indeed, SsA increased intracellular malondialdehyde (MDA) and iron accumulation, while it decreased the levels of reduced glutathione (GSH) in HCC. Deferoxamine (DFO), ferrostatin-1 (Fer-1) and GSH could rescue SsA-induced cell death, whereas Z-VAD-FMK was found ineffective in inhibiting SsA-induced cell death in HCC. Importantly, our result indicated that SsA induced the expression of activation transcription factor 3 (ATF3). SsA-induced cell ferroptosis and suppression of SLC7A11 are dependent on ATF3 in HCC. Moreover, we revealed that SsA induced ATF3 upregulation via activation of endoplasmic reticulum (ER) stress. Taken together, our findings support that ATF3-dependent cell ferroptosis mediated the antitumor effects of SsA, opening the possibility to explore SsA as a ferroptosis inducer in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Fator 3 de Transcrição , Neoplasias Hepáticas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Glutationa , Ferro , Fator 3 Ativador da Transcrição/genética
16.
J Am Chem Soc ; 145(30): 16748-16759, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37475090

RESUMO

Understanding the changes of molecular conformations is crucial for realizing multiple emissive triplet states in room-temperature phosphorescence (RTP) materials. In this work, we report two molecules, 4,4'-dimethylbenzil (DMBZ) and 4,4'-di-tert-butylbenzil (DBBZ) with conformation-dependent luminescence, and demonstrate that stimulus-responsive and wide-tuning RTP emissions can be realized via synergetic conformational regulations in ground and excited states. Due to conformational changes, DMBZ and DBBZ show abundant RTP variations upon external stimuli, including light, force, heat, and fumigation. Notably, DBBZ exhibits multiple conformational changes in both ground and excited states, which endow DBBZ with multiple emissive states and unique stimulus-responsive behaviors. DBBZ presents multiple phase transitions between the supercooled liquid state and different solid states accompanied by different phosphorescence transitions, in which the excited-state conformations are effectively regulated. Moreover, wide-range RTP regulations (between cyan, green, and yellow) are realized in both single component and host-guest systems of DBBZ, showing potential applications in temperature sensing, multicolor dynamic displays, and information encryption. These results may provide new visions for understanding the complicated conformational changes in the aggregated state, as well as unique insights into the relationship between molecular conformations, RTP emissions, and stimulus responsiveness.

17.
Polymers (Basel) ; 15(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242890

RESUMO

Epoxy resin (EP), as a kind of dielectric polymer, exhibits the advantages of low-curing shrinkage, high-insulating properties, and good thermal/chemical stability, which is widely used in electronic and electrical industry. However, the complicated preparation process of EP has limited their practical applications for energy storage. In this manuscript, bisphenol F epoxy resin (EPF) was successfully fabricated into polymer films with a thickness of 10~15 µm by a facile hot-pressing method. It was found that the curing degree of EPF was significantly affected by changing the ratio of EP monomer/curing agent, which led to the improvement in breakdown strength and energy storage performance. In particular, a high discharged energy density (Ud) of 6.5 J·cm-3 and efficiency (η) of 86% under an electric field of 600 MV·m-1 were obtained for the EPF film with an EP monomer/curing agent ratio of 1:1.5 by hot pressing at 130 °C, which indicates that the hot-pressing method could be facilely employed to produce high-quality EP films with excellent energy storage performance for pulse power capacitors.

18.
Pestic Biochem Physiol ; 192: 105394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105632

RESUMO

Callosobruchus chinensis (Coleoptera: Fabaceae) is a worldwide pest that feeds exclusively on legumes, and is the most serious pest affecting mung beans. Usually, the insect olfactory system plays a predominant role in searching for host plants and egg-laying locations. Chemosensory proteins (CSPs), are mainly responsible for transporting specific odour molecules from the environment. In this study, we found that the CSP1 gene of adult C. chinensis displayed antennae-biased expression using quantitative real-time PCR (qRT-PCR) analysis. The binding properties of 23 mung bean volatiles were then determined through several analyses of in vitro recombinant CSP1 protein, including fluorescence competitive binding assay, homology modelling, molecular docking, and site-directed mutagenesis. Fluorescence competitive binding assays showed that CchiCSP1 protein could bind to four mung bean volatiles and was most stable at pH 7.4. After site-directed mutation of three key amino acid bases (L39, V25, and Y35), their binding affinities to each ligand were significantly decreased or lost. This indicated that these three amino acid residues may be involved in the binding of CchiCSP1 to different ligands. We further used Y-tube behavioural bioassays to find that the four mung bean volatiles had a significant attraction or repulsion response in adult C. chinensis. The above findings confirm that the CchiCSP1 protein may be involved in the response of C. chinensis to mung bean volatiles and plays an important role in olfactory-related behaviours. The four active volatiles are expected to develop into new behavioural attractants or repellents in the future.


Assuntos
Besouros , Fabaceae , Vigna , Animais , Simulação de Acoplamento Molecular , Ligantes
19.
Pestic Biochem Physiol ; 191: 105348, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963930

RESUMO

A precise chemosensory system can help insects complete various important behavioral responses by accurately identifying different external odorants. Therefore, deeply understanding the mechanism of insect recognition of important odorants will help us develop efficient and environmentally-friendly behavioral inhibitors. Spodoptera frugiperda is a polyphagous pest that feeds on >350 different host plants worldwide and also harms maize production in China. However, the molecular mechanism of the first step for males to use odorant-binding proteins (OBPs) to recognize sex pheromones remains unclear. Here, we obtained 50 OBPs from the S. frugiperda genome, and the expression level of SfruGOBP1 in females was significantly higher than that in males, whereas SfruGOBP2 displayed male-biased expression. Fluorescence competitive binding assays showed that only SfruGOBP2 showed binding affinities for the four sex pheromones of female S. frugiperda. Subsequently, we identified some key amino acid residues that can participate in the interaction between SfruGOBP2 and sex pheromones using molecular docking and site-directed mutagenesis methods. These findings will help us explore the interaction mechanism between GOBPs and sex pheromones in moths, and provide important target genes for developing new mating inhibitors of S. frugiperda in the future.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Atrativos Sexuais/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Odorantes , Simulação de Acoplamento Molecular , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Feromônios/metabolismo
20.
Chem Sci ; 14(6): 1551-1556, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794188

RESUMO

The isomeric strategy is an important design concept in molecular design that has a non-negligible influence on molecular properties. Herein, two isomeric thermally activated delayed fluorescence (TADF) emitters (NTPZ and TNPZ) are constructed with the same skeleton consisting of an electron donor and electron acceptor but different connection sites. Systematic investigations show that NTPZ exhibits a small energy gap, large up-conversion efficiency, low non-radiative decay, and high photoluminescence quantum yield. Further theoretical simulations reveal that the excited molecular vibrations play a key role in regulating the non-radiative decays of the isomers. Therefore, an NTPZ based OLED achieves better electroluminescence performances, such as a higher external quantum efficiency of 27.5% compared to a TNPZ based OLED (18.3%). This isomeric strategy not only provides an opportunity to deeply understand the relationship between substituent locations and molecular properties, but also affords a simple and effective strategy to enrich TADF materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA